
A Short Tale About executable_stack in elf_read_imp lies_exec() in the Linux
Kernel

Alejandro Hernández
https://twitter.com/nitr0usmx

http://chatsubo-labs.blogspot.mx��� http://www.brainoverflow.org

This is a short and basic analysis I did when I was uncertain about code execution in the
data memory segment. Later on, I describe what’s happening in the kernel side as well as
what seems to be a small logic bug.

I’m not a kernel hacker/developer/ninja; I’m just a Linux user trying to figure out the reason
of this behavior by looking in key places such as the ELF loader and other related
functions. So, if you see any mistakes or you realize that I approached this in a wrong way,
please let me know, I’d really appreciate that.

This article also could be useful for anyone starting in shellcoding since they might think
their code is wrong when, in reality, there are other things around to take care of in order
to test the functionality of their shellcodes or any other kind of code.

USER-LAND: Why is it possible to execute code in th e data segment if it doesn’t
have the PF_EXEC enabled?

A couple of weeks ago I was reading an article (in Spanish) about shellcodes creation in
Linux x64. For demonstration purposes I’ll use this 64-bit execve(“/bin/sh”) shellcode:

#include <unistd.h>

char shellcode[] =
"\x48\x31\xd2\x48\x31\xf6\x48\xbf"
"\x2f\x62\x69\x6e\x2f\x73\x68\x11"
"\x48\xc1\xe7\x08\x48\xc1\xef\x08"
"\x57\x48\x89\xe7\x48\xb8\x3b\x11"
"\x11\x11\x11\x11\x11\x11\x48\xc1"
"\xe0\x38\x48\xc1\xe8\x38\x0f\x05";

int main(int argc, char ** argv) {
 void (*fp)();
 fp = (void(*)())shellcode;
 (void)(*fp)();

 return 0;
} �

The author suggests the following for the proper execution of the shellcodes:
“We compile and with the execstack utility we specify that the stack region used in the
binary will be executable...”.

Immediately, I thought it was wrong because of the code to be executed would be placed
in the ‘shellcode’ symbol in the .data section within the ELF file, which, in turn, would be in
the data memory segment, not in the stack segment at runtime. For some reason, when
trying to execute it without enabling the executable stack bit, it failed, and the opposite
when it was enabled:

According to the execstack’s man-page:
“… ELF binaries and shared libraries now can be marked as requiring executable stack or
not requiring it… This marking is done through the p_flags field in the PT_GNU_STACK
program header entry… The marking is done automatically by recent GCC versions”.

It only modifies one bit adding the PF_EXEC flag to the PT_GNU_STACK program header. It
also can be done by modifying the binary with an ELF editor such as HTEditor or at linking
time by passing the argument ‘-z execstack’ to gcc.

The change can be seen simply observing the flags RWE (Read, Write, Execution) using
the readelf utility. In our case, only the ‘E’ flag was added to the stack memory segment:

The first loadable segment in both binaries, with the ‘E’ flag enabled, is where the code
itself resides (the .text section) and the second one is where all our data resides. It’s also
possible to map which bytes from each section correspond to which memory segments
(remember, at runtime, the sections are not taken into account, only the program headers)
using ‘readelf -l shellcode’.

So far, everything makes sense to me, but, wait a minute, the shellcode, or any other
variable declared outside main() , is not supposed to be in the stack right? Instead, it
should be placed in the section where the initialized data resides (as far as I know it’s
normally in .data or .rodata). Let’s see where exactly it is by showing the symbol table and
the corresponding section of each symbol (if it applies):

It’s pretty clear that our shellcode will be located at the memory address 0x00600840 in
runtime and that the bytes reside in the .data section. The same result for the other binary,
‘shellcode_execstack’.

By default, the data memory segment doesn’t have the PF_EXEC flag enabled in its
program header, that’s why it’s not possible to jump and execute code in that segment at
runtime (Segmentation Fault), but: when the stack is executable, why is it also
possible to execute code in the data segment if it doesn’t have that flag enabled?

Is it a normal behavior or it’s a bug in the dynamic linker or kernel that doesn’t take into
account that flag when loading ELFs? So, to take the dynamic linker out of the game, my
fellow Ilja van Sprundel gave me the idea to compile with -static to create a standalone
executable. A static binary doesn’t pass through the dynamic linker, instead, it’s loaded
directly by the kernel (as far as I know). The same result was obtained with this one, so
this result pointed directly to the kernel.

I tested this in a 2.6 kernel (x86_64) and in a 3.2 kernel (i686), and I got the same
behavior in both.

KERNEL-LAND: Is that a bug in elf_read_implies_exec()?

Now, for the interesting part, what is really happening in the kernel side? I went straight to
load_elf_binary() in linux-2.6.32.61/fs/binfmt_elf.c and found that the program header
table is parsed to find the stack segment so as to set the executable_stack variable
correctly:

 int executable_stack = EXSTACK_DEFAULT;
...
 elf_ppnt = elf_phdata;
 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ ppnt++)
 if (elf_ppnt->p_type == PT_GNU_STACK) {
 if (elf_ppnt->p_flags & PF_X)
 executable_stack = EXSTACK_ENABLE_X;
 else
 executable_stack = EXS TACK_DISABLE_X;
 break;
 }

Keep in mind that only those three constants about executable stack are defined in the
kernel (linux-2.6.32.61/include/linux/binfmts.h):

/* Stack area protections */
#define EXSTACK_DEFAULT 0 /* Whatever the arch defaults to */
#define EXSTACK_DISABLE_X 1 /* Disable executable stacks */
#define EXSTACK_ENABLE_X 2 /* Enable executable stacks */

Later on, the process’ personality is updated as follows:

 /* Do this immediately, since STACK_TOP as use d in
setup_arg_pages may depend on the personality. */
 SET_PERSONALITY(loc->elf_ex);
 if (elf_read_implies_exec(loc->elf_ex, executable_s tack))
 current->personality |= READ_IMPLIES_EXEC;

 if (!(current->personality & ADDR_NO_RANDOMIZE) &&
randomize_va_space)
 current->flags |= PF_RANDOMIZE;
...

elf_read_implies_exec() is a macro in linux-2.6.32.61/arch/x86/include/asm/elf.h:

/*
 * An executable for which elf_read_implies_exec() returns TRUE
will have the READ_IMPLIES_EXEC personality flag se t
automatically.
 */
#define elf_read_implies_exec(ex, executable_stack) \
 (executable_stack != EXSTACK_DISABLE_X)

In our case, having an ELF binary with the PF_EXEC flag enabled in the PT_GNU_STACK
program header, that macro will return TRUE since EXSTACK_ENABLE_X !=
EXSTACK_DISABLE_X, thus, our process’ personality will have READ_IMPLIES_EXEC

flag. This constant, READ_IMPLIES_EXEC, is checked in some memory related functions
such as in mmap.c, mprotect.c and nommu.c (all in linux-2.6.32.61/mm/). For instance,
when creating the VMAs (Virtual Memory Areas) by the do_mmap_pgoff() function in
mmap.c, it verifies the personality so it can add the PROT_EXEC (execution allowed) to the
memory segments [1]:

 /*
 * Does the application expect PROT_READ to im ply PROT_EXEC?
 *
 * (the exception is when the underlying files ystem is noexec
 * mounted, in which case we dont add PROT_EX EC.)
 */
 if ((prot & PROT_READ) && (current->personality &
READ_IMPLIES_EXEC))
 if (!(file && (file->f_path.mnt->mnt_f lags &
MNT_NOEXEC)))
 prot |= PROT_EXEC;

And basically, that’s the reason of why code in the data segment can be executed when
the stack is executable.

On the other hand, I had an idea: to delete the PT_GNU_STACK program header by
changing its corresponding program header type to any other random value. Doing that,
executable_stack would remain EXSTACK_DEFAULT when compared in
elf_read_implies_exec() , which would return TRUE, right? Let’s see:

The program header type was modified from 0x6474e551 (PT_GNU_STACK) to
0xfee1dead, and note that the second LOAD (data segment, where our code to be
executed is) doesn’t have the ‘E’xecutable flag enabled:

The code was executed even when the execution flag is not enabled in the program
header that holds it. I think it’s a logic bug in elf_read_implies_exec() because one
can simply delete the PT_GNU_STACK header as to set executable_stack =
EXSTACK_DEFAULT, making elf_read_implies_exec() to return TRUE. Instead
comparing against EXSTACK_DISABLE_X, it should return TRUE only if
executable_stack is EXSTACK_ENABLE_X:

#define elf_read_implies_exec(ex, executable_stack) \
 (executable_stack == EXSTACK_ENABLE_X)

Anyway, perhaps that’s the normal behavior of the Linux kernel for some compatibility
issues or something else, but isn’t it weird that making the stack executable or
deleting the PT_GNU_STACK header all the memory segments are loaded with
execution permissions even when the PF_EXEC flag is not set?

What do you think?

Side notes:

- Kernel developers pass loc->elf_ex and never use it in:
#define elf_read_implies_exec(ex, executable_stack)
(executable_stack != EXSTACK_DISABLE_X)

- Two constants are defined but never used in the whole kernel code:
#define INTERPRETER_NONE 0
#define INTERPRETER_ELF 2

Finally, I’d like to thank my collegues Ilja van Sprundel and Diego Bauche Madero for
giving me some ideas.

Thanks for reading.

— Alejandro Hernández
@nitr0usmx

References:
[1] “Understanding the Linux Virtual Memory Manager”. Mel Gorman.
Chapter 4 - Process Address Space.
https://www.kernel.org/doc/gorman/html/understand/understand007.html#fig:%20sys_mm
ap2

